Pitx2 defines alternate pathways acting through MyoD during limb and somitic myogenesis.

نویسندگان

  • Aurore L'honoré
  • Jean-François Ouimette
  • Marisol Lavertu-Jolin
  • Jacques Drouin
چکیده

The MyoD gene is part of the core regulatory network that governs skeletal myogenesis and acts as an essential determinant of the myogenic cell fate. Although generic regulatory networks converging on this gene have been described, the specific mechanisms leading to MyoD expression in muscles of different ontology remain misunderstood. We now show that the homeobox gene Pitx2 is required for initial activation of the MyoD gene in limb muscle precursors through direct binding of Pitx2 to the MyoD core enhancer. Whereas Myf5 and Mrf4 are dispensable for limb muscle progenitor fate, inactivation of Myf5 and Mrf4 in Pitx2 mutants results in a drastic decrease of limb MyoD expression. Thus, Pitx2 and Myf5 define parallel genetic pathways for limb myogenesis. We show a similar dependence on Pitx2 and Myf5(Mrf4) in myotome, where MyoD expression is initially activated by Myf5 and Mrf4. In their absence, MyoD expression is eventually rescued by a Pax3-dependent mechanism. We now provide evidence that Pitx2 contributes to the rescue of MyoD expression and that it acts downstream of Pax3. We thus propose that myogenic differentiation of somite-derived muscle cells relies on two parallel genetic pathways, with the Pitx2 pathway being of primary importance for limb myogenesis but the Myf5 and Mrf4 pathway predominating in myotome. Muscle-specific wiring of regulatory networks composed of similar transcription factors thus underlies development of distinct skeletal muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development

RNA-binding proteins (RBP) contribute to gene regulation through post-transcriptional events. Despite the important roles demonstrated for several RBP in regulating skeletal myogenesis in vitro, very few RBP coding genes have been characterized during skeletal myogenesis in vertebrate embryo. In the present study we report that Rbm24, which encodes the RNA-binding motif protein 24, is required ...

متن کامل

Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis.

The basic helix-loop-helix transcription factor MyoD is a central actor that triggers the skeletal myogenic program. Cell-autonomous and non-cell-autonomous regulatory pathways must tightly control MyoD expression to ensure correct initiation of the muscle program at different places in the embryo and at different developmental times. In the present study, we have addressed the involvement of S...

متن کامل

Altered myogenesis in Six1-deficient mice.

Six homeoproteins are expressed in several tissues, including muscle, during vertebrate embryogenesis, suggesting that they may be involved in diverse differentiation processes. To determine the functions of the Six1 gene during myogenesis, we constructed Six1-deficient mice by replacing its first exon with the lacZ gene. Mice lacking Six1 die at birth because of severe rib malformations and sh...

متن کامل

A unique pattern of expression of the four muscle regulatory factor proteins distinguishes somitic from embryonic, fetal and newborn mouse myogenic cells.

A unique pattern of expression of the four muscle regulatory factor (MRF) proteins was found to distinguish early somitic from embryonic, fetal and newborn limb myogenic cells in vitro. Expression of the myosin heavy chain (MHC), MyoD, myogenin, Myf-5, and MRF4 proteins was examined by immunocytochemistry in cultures of four distinct types of mouse myogenic cells: somitic (E8.5), embryonic (E11...

متن کامل

Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression.

Previous work has indicated that signals from the neural tube, notochord, and surface ectoderm promote somitic myogenesis. Here, we show that somitic myogenesis is under negative regulation as well; BMP signaling serves to inhibit the activation of MyoD and Myf5 in Pax3-expressing cells. Furthermore, we show that the BMP antagonist Noggin is expressed within the dorsomedial lip of the dermomyot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 22  شماره 

صفحات  -

تاریخ انتشار 2010